Thermal (in)stability of type I collagen fibrils.

نویسندگان

  • S G Gevorkian
  • A E Allahverdyan
  • D S Gevorgyan
  • A L Simonian
چکیده

We measured the Young's modulus at temperatures ranging from 20 to 100 degrees C for a collagen fibril that is taken from a rat's tendon. The hydration change under heating and the damping decrement were measured as well. At physiological temperatures 25 to 45 degrees C, the Young's modulus decreases, which can be interpreted as an instability of the collagen. For temperatures between 45 and 80 degrees C, the Young's modulus first stabilizes and then increases when the temperature is increased. The hydrated water content and the damping decrement have strong maximums in the interval 70 to 80 degrees C indicating complex intermolecular structural changes in the fibril. All these effects disappear after heat-denaturation of the sample at 120 degrees C. Our main achievement is a five-stage mechanism by which the instability of a single collagen at physiological temperatures is compensated by the interaction between collagen molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstituted collagen fibrils. Fibrillar and molecular stability of the collagen upon maturation in vitro.

During the maturation in vitro of reconstituted collagen fibrils prepared from rat skin, the mechanical and thermal stability of collagen increased and the pepsin-solubility decreased. At the same time a larger fraction of the pepsin-soluble collagen attained a lower molecular thermal stability that resulted in a biphasic thermal transition of the soluble collagen. Type-I collagen, with a simil...

متن کامل

Embryonic avian cornea contains layers of collagen with greater than average stability

A unique morphological feature of the embryonic avian cornea is the uniformity of its complement of striated collagen fibrils, each of which has a diameter of 25 nm. We have asked whether this apparent morphological uniformity also reflects an inherent uniformity of the structural and physical properties of these fibrils. For this we have examined the in situ thermal stability of the type I col...

متن کامل

In vitro formation and thermal transition of novel hybrid fibrils from type I fish scale collagen and type I porcine collagen.

Novel type I collagen hybrid fibrils were fabricated by neutralizing a mixture of type I fish scale collagen solution and type I porcine collagen solution with a phosphate buffer saline at 28 °C. Their structure was discussed in terms of the volume ratio of fish/porcine collagen solution. Scanning electron and atomic force micrographs showed that the diameter of collagen fibrils derived from th...

متن کامل

Effect of alcohols and neutral salt on the thermal stability of soluble and precipitated acid-soluble collagen.

The effects of mono- and poly-hydric alcohols in the presence of KCl on the intrinsic stability of collagen molecules in dilute acid solution were compared with corresponding solvent and salt effects on the increased stability of the aggregated molecules in salt-precipitated fibrils. Salt addition decreased solubility and increased the thermal stability of fibrils, but progressively decreased t...

متن کامل

Theoretical Analysis of the Basis of Collagen Stability

Abstract: Collagen is the most abundant protein in vertebrates. Collagen fibrils have great tensile strength and thermal stability. Recently a form of collagen was developed with greater thermal stability than the wildtype form. By investigating ab initio results we have determined that the gauche effect and steric interactions selectively stabilize the conformation of the Proline derivative pr...

متن کامل

Immobilization of the Alkaline Phosphatase on Collagen Surface via Cross-Linking Method

Background: Collagen, the most abundant protein in the human body, and as an extracellular matrix protein, has an important role in the fiber formation. This feature of the collagen renders  establishment of the structural skeleton in tissues. Regarding specific features associated with the collagen, such as, formation of the porous structure, permeability and hydrophilicity, it can also be use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2009